Geodesics on an invariant surface

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous geodesics of left invariant Finsler metrics

In this paper, we study the set of homogeneous geodesics of a leftinvariant Finsler metric on Lie groups. We first give a simple criterion that characterizes geodesic vectors. As an application, we study some geometric properties of bi-invariant Finsler metrics on Lie groups. In particular a necessary and sufficient condition that left-invariant Randers metrics are of Berwald type is given. Fin...

متن کامل

Isometry-invariant geodesics and the fundamental group

We prove that on closed Riemannian manifolds with infinite abelian, but not cyclic, fundamental group, any isometry that is homotopic to the identity possesses infinitely many invariant geodesics. We conjecture that the result remains true if the fundamental group is infinite cyclic. We also formulate a generalization of the isometry-invariant geodesics problem, and a generalization of the cele...

متن کامل

Isometry - invariant geodesics with Lipschitz obstacle 1

Given a linear isometry A0 : Rn → Rn of finite order on Rn , a general 〈A0〉-invariant closed subset M of Rn is considered with Lipschitz boundary. Under suitable topological restrictions the existence of A0-invariant geodesics of M is proven.

متن کامل

Geometry of Infinitely Generated Veech Groups

Veech groups uniformize Teichmüller geodesics in Riemann moduli space. We gave examples of infinitely generated Veech groups; see Duke Math. J. 123 (2004), 49–69. Here we show that the associated Teichmüller geodesics can even have both infinitely many cusps and infinitely many infinite ends.

متن کامل

A Note on Carnot Geodesics in Nilpotent Lie Groups

We show that strictly abnormal geodesics arise in graded nilpotent Lie groups. We construct such a group, for which some Carnot geodesics are strictly abnormal and, in fact, not normal in any subgroup. In the 2-step case we also prove that these geodesics are always smooth. Our main technique is based on the equations for the normal and abnormal curves, that we derive (for any Lie group) explic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2011

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2011.03.002